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ABSTRACT

The profusion of information retrieval effectiveness metrics has in-
spired the development of meta-evaluative criteria for choosing be-
tween them. One such criterion is discriminative power; that is,
the proportion of system pairs whose difference in effectiveness is
found statistically significant. Studies of discriminative power fre-
quently find normalized discounted cumulative gain (nDCG) to be
the most discriminative metric, but there has been no satisfactory
explanation of which feature makes it so discriminative. In this
paper, we examine the discriminative power of nDCG and several
other metrics under different evaluation and pooling depths, and
with different forms of score normalization. We find that evalua-
tion depth is more important to metric behaviour and discriminative
power than metric type; that evaluating beyond pooling depth does
not seem to lead to a misleading system reinforcement effect; and
that nDCG does seem to have a genuine, albeit slight, edge in dis-
criminative power under a range of conditions.

1. INTRODUCTION
The field of information retrieval has produced a wide variety

of evaluation metrics. This fecundity raises the question of how to
choose between them, inspiring the field of metricmeta-evaluation.
Several meta-evaluative criteria have been proposed, most notably
that of the metric’s stability; that is, the consistency of a metric’s
results from one set of topics to another. Various measures of stabil-
ity have been proposed. One of these is the metric’s discriminative
power; that is, the proportion of system pairs whose difference in
effectiveness is found statistically significant.
Discriminative power is desirable because it allows the experi-

menter to achieve reliable results with fewer topics, and so reduced
effort. Statistical consistency, however, does not necessarily im-
ply consistency in measuring true system effectiveness; it could
instead arise from consistently measuring some extraneous prop-
erty of the evaluation. An evaluation metric that ranked systems
by name would be perfectly consistent and highly discriminative
across all topics, but would hardly discern superior retrieval effec-
tiveness. More practically, retrieval evaluation is often performed
on unpooled systems, and beyond pooling depth even on pooled
ones. Under these conditions, a metric’s stability might be caused
by system reinforcement, with similar systems drawing each oth-
ers’ unpooled documents into the pool.
Measures of stability repeatedly identify certain metrics as more

stable than others. In particular, normalized discounted cumula-

tive gain (nDCG) and average precision (AP) appear more stable
than rank-biased precision (RBP), and all three of these more sta-
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ble than precision at ten. The divergence between nDCG and RBP
is of particular interest, since these are in some respects similar,
rank-weighted metrics. They differ in that, first, nDCG is a normal-
ized metric, RBP an unnormalized one; and second, RBP weights
decline in consistent proportion, whereas nDCG is steep at high
ranks, but flat at lower ones – exactly those ranks covered by eval-
uating beyond pooling depth. This suggests three hypotheses that
may explain nDCG’s greater stability over RBP:

1. It is normalization that makes nDCG more stable. This can
be tested by normalizing RBP, and unnormalizing DCG.

2. DCG is more stable because its heavier tail picks up valid
information about system performance. This can be explored
by increasing RBP’s p parameter, making it a deeper metric,
and by evaluating DCG more shallowly.

3. The greater stability of DCG comes from evaluation beyond
pooling depth causing system reinforcement, which DCG’s
heavy tail is consistently misled by. This can be investigated
by varying evaluation and pooling depth together.

This paper probes these hypotheses, measuring the discriminative
power of a variety of metrics, normalizations, and evaluation and
pooling depths. The investigation illuminates the relative benefits
of normalization, depth of evaluation, and depth of pooling, for
metric stability.

2. PREVIOUS WORK
While there was some earlier, mostly theoretical discussion of

the merits of different metrics [van Rijsbergen, 1979, Cooper, 1968],
the real impetus for the development and empirical evaluation of
new metrics came with the inauguration of the TREC effort in 1992
[Voorhees and Harman, 2005], which for the first time provided
the large-scale runsets needed for such empirical analysis. The
most widely adopted of the metrics developed at TREC is average
precision (AP). The main justification for AP was its relationship
to the traditional precision–recall curves [Buckley and Voorhees,
2005]. The combination of recall and precision in the one metric
makes analysis and extension complex; in particular, extending AP
to handle multi-grade relevance is possible but not straightforward.
Instead, Järvelin and Kekäläinen [2002] propose the discounted cu-
mulative gain (DCG) metric, where each rank has a fixed weight
(or discount), which is multiplied with the multi-graded relevance
(or gain) of the document at that rank. Järvelin and Kekäläinen
further propose the use of normalization, to make each per-topic
score relative to the ideal score achievable on that topic, leading
to normalized discounted cumulative gain (nDCG). Normalization
(or alternatively simple scaling based on cutoff depth) is required to



bring DCG scores within a defined range, because the inverse loga-
rithm sequence of rank weights is not convergent. Moffat and Zobel
[2008] propose instead to use a convergent, geometric weighting
sequence, in their rank-biased precision (RBP) metric. Convergent
weights mean that a partial evaluation bounds the scores achiev-
able on a full one, and the uncertainty resulting from unassessed
documents can be quantified as an error residual.
The TREC forum and data also provoked interest in the evalua-

tion and comparison of metrics themselves. An early meta-evaluative
study is that of Zobel [1998], who investigates the reliability of sig-
nificance tests via split-topic experiments, as well as the effect of
different pooling depths and of assessment bias against unpooled
systems. The agreement of several different metrics is measured,
though the stability of different measures is not directly determined.
A more explicit measure of metric stability is introduced by Buck-
ley and Voorhees [2000], in the form of the swap rate, which is
the frequency of an ordering of two systems on one topic set being
reversed on another. The swap rate of several metrics is compared,
with recall and precision at 1,000 (R@1000, P@1000) showing
the greatest stability (lowest swap rate), followed closely by R-
precision and average precision, while shallower metrics such as
precision at ten have the lowest stability. The effect of the number
of topics is investigated, but not of different pooling depths. Alter-
native forms of the swap rate metric are developed by Voorhees and
Buckley [2002] and Sanderson and Zobel [2005].
Another measure of metric stability, introduced by Sakai [2006],

is discriminative power, defined as the proportion of system pairs
whose difference in effectiveness is found statistically significant.
Sakai employs the bootstrap test, but other tests can be used in-
stead. Sakai compares the discriminative power of several metrics,
including AP, P@1000, nDCG@1000, and his own Q-measure. He
finds Q-measure, AP, and nDCG the most discriminative metrics,
and P@1000 the least. The effect of pooling or evaluation depth is
not directly addressed. Discriminative power is also used in studies
of pooling bias in Sakai [2007] and Sakai [2008].
An alternative approach to meta-evaluation is that of test theory

[Bodoff and Li, 2007]. Test theory was developed for analysing
exam tests applied to human subjects, in which a large number of
examinees are evaluated against the same set of test items. This
description applies tolerably well to collaborative retrieval experi-
ments, in which the examinees are retrieval systems, and the test
items are topics. Test theory analyses are used by Carterette et al.
[2008] to measure the stability of document sampling and score
estimation methods, and by Kanoulas and Aslam [2009] as an ob-
jective function against which nDCG parameters can be tuned.
A final measure of stability is predictivity, proposed in Webber

et al. [2008b]. Predictivity is the similarity of system rankings on
one random set of topics compared to those on another, measured
using Kendall’s τ . The predictivity of a metric to itself can be mea-
sured, but also of one metric to another. Webber et al. find AP and
nDCG to be the most predictive metrics, with RBP (p = 0.95) less
predictive, and P@10 and reciprocal rank the least predictive.

3. MATERIALS AND METHODS
We begin this section by introducing the evaluation metrics ex-

amined in this paper. Next, we describe discriminative power as a
measure of metric stability. Finally, we introduce the datasets this
paper employs.

3.1 Evaluation metrics
An IR system is evaluated by having it run a set of queries or top-

ics against a document corpus, returning a ranked list of documents
in answer to each topic. Each document ranking is marked up for

relevance, to produce a relevance vector, R = (r1, r2, . . .). Rele-
vance assessments are often performed in advance, and recorded as
qrels; topics, corpus, and qrels together constitute a test collection.
Relevance can be graded, but binary relevance is assumed here.

Exhaustive assessment of all documents for relevance to every
query is not feasible. The standard solution is to pool and assess
the top d ranked documents returned by a set of participating sys-
tems. A common pool depth is 100. Under pooling, unassessed
documents are assumed to be irrelevant. This can lead to a bias
against systems that did not contribute to the pool. Similarly, if
evaluation depth is greater than pooled depth, there can be a bias in
favour of similar systems, which drag each others’ post-pool doc-
uments into the pool. The standard evaluation depth at TREC is
k = 1,000.

The function of an evaluation metric is to convert the marked-up
relevance vector R into a single score. Two fundamental concepts
in evaluation metrics are precision and recall. Precision is the pro-
portion of (a given set of) returned documents that are relevant; re-
call is the proportion of relevant documents that are returned. Cal-
culating recall requires that the number R of relevant documents be
determined. Under pooling, R is set to the number of relevant doc-
uments found in the pool; deeper pooling (or more pooled systems)
will increase R, and therefore change recall values.

To evaluate precision or recall on a ranked list, the list is trun-
cated to an evaluation depth, k. Precision at depth k is:

P@k(R) =

k
X

i=1

ri

k
, (1)

while recall at depth k is:

R@k(R) =

k
X

i=1

ri

R
. (2)

The metrics differ solely in the divisor. If k > R, then P@k < 1.0;
conversely, if k < R, R@k < 1.0. Thus both metrics are subject
to compressed score ranges for extreme disparities of k and R.

Average precision (AP) combines elements of both precision and
recall. AP is calculated as the average of the precision at each rank
that a relevant document is returned; unreturned (known) relevant
documents receive a precision of 0. More formally:

AP@k(R) =
1

R

k
X

i=1

ri · P@i(R) . (3)

Again, if R > k, then AP@k < 1.0, meaning that AP scores can
become compressed when evaluation is shallow or the number of
known relevant documents is large. An alternative is to abbreviate

the normalizing constant to the minimum of k and R:

aAP@k(R) =
1

min(k, R)

k
X

i=1

ri · P@i(R) . (4)

This latter (non-standard) form is evaluated later.
Average precision assumes binary relevance. An alternative met-

ric, designed in part for graded relevance (though not so used here),
is discounted cumulative gain (DCG) [Järvelin and Kekäläinen,
2002]. In DCG, a ranking’s score is the dot product of its relevance
vector with an inverse logarithmic weighting vector, as follows:

DCG@k(R) =

k
X

i=1

ri/ log2(min(2, i)) . (5)

(An alternative formulation divides by log2(i + 1), but we follow
the original formulation here.)



Because of its non-convergent weights, DCG is not bounded
above by 1.0. Instead, the maximum achievable score for a topic
varies with the number of relevant documents, impeding score com-
parison between topics. Järvelin and Kekäläinen [2002] deal with
this by normalizing the metric, producing normalized DCG (nDCG).
An ideal ranking for the topic is created, based on the known rele-
vant documents; for binary relevance, this is a ranking with R rel-
evant documents on top, truncated to depth k if R > k. The DCG
score of the ideal vector is calculated, and the score of each ac-
tual document ranking for that topic is divided by the ideal score to
arrive at the normalized score. Normalization can be similarly ap-
plied to most other metrics. Indeed, AP can be regarded as normal-
ized sum of precisions, and R@k as normalized relevant-returned
at k, except that, in the standard forms of AP and recall, the ideal
ranking is not truncated at depth k. Untruncated ideal rankings will
be referred to as expanded. One can consider a variant of nDCG of
this form, labeled enDCG.
While DCG uses a non-convergent weighting scheme, the rank-

biased precision metric (RBP) uses a convergent, geometric one
[Moffat and Zobel, 2008]. The metric is based on a simple user
model: the user, having reached any given rank in the ranking, has
probability p of continuing to the next rank, where 0 ≤ p < 1
measures the user’s persistence. Larger values of p lead to deeper
evaluation. The full formulation is:

RBP(R, p) = (1 − p)

∞
X

i=1

ri · p
(i−1) . (6)

Because of its convergent weights, RBP is not dependent on the
evaluation depth k. Partial evaluation sets bounds, as a base score
and a residual, on the score that a full evaluation would achieve.
The residual is the sum of the weights of the unassessed documents;
even to infinite depth, this sum is finite. Here, we will using RBP
base values, by calculating Equation 6 to depth k. In some exper-
iments, the p parameter will be fixed; in others, it will be adjusted
so that the residual at depth k (that is, the sum of the weights from
k + 1 to ∞) is 0.1. The formula for calculating the parameter p
which will provide a residual r for evaluation to depth k is:

p = r(1/k)
(7)

A residual of 0.1 is achieved at depth k = 10 evaluation by p =
0.8, at k = 100 by p = 0.977, and at k = 1,000 by p = 0.9977.
DCG and RBP differ chiefly in their rank weightings. The DCG

weights decline steeply at high ranks, but are almost flat thereafter,
while those for RBP decline by the same proportion at each rank,
as can be seen in Figure 1. For shallow evaluation, DCG is top-
weighted, whereas for deep evaluation, DCG is fat-tailed. For eval-
uation depth k = 1,000 and pooling depth d = 100, 82% of DCG’s
total rank weight falls between depth 101 to 1,000. In contrast,
only half a percent of the weight of RBP with p set to 0.95 – the
highest value considered by Moffat and Zobel [2008] – falls in this
range. Raising p to 0.9977, for a residual of 0.1 beyond depth
1,000, places 77% of base RBP’s weight between ranks 101 and
1,000, but even within this range, RBP is more top-weighted than
that of DCG.
Normalization is one method of adjusting scores for the difficulty

of a topic; an alternative is standardization [Webber et al., 2008a].
Under standardization, a topic’s difficulty is estimated from the
scores a set of reference systems on receive on that topic, and the
raw metric scores achieved by systems against that topic are ad-
justed accordingly. If topic t produces a mean score of µt from the
reference systems, and a score standard deviation of σt; and if a
run s receives a raw score of Xst for topic t, then the normalized
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Figure 1: Rank weights of DCG and of RBP with various p values.
Note the different scales for RBP (left axis) and DCG (right axis).

score X ′

st for that run is:

X ′

st =
Xst − µt

σt
(8)

The standardized scores reported in this paper are self-standardized;
that is, the set of systems whose scores are standardized (the orig-
inal TREC runsets) also serves as the reference set used to derive
the standardization factors.

3.2 Stability and associated measures
Discriminative power measures the proportion of system pairs

from a set of systems found to be significantly different. The sig-
nificance test employed here is a paired, two-tailed t test, at signif-
icance level α = 0.05. The smallest topic set dealt with here is 49
topics (TREC 2004 Robust new topics), large enough to justify the
use of the t test, based on the central limit theorem. Previous work
has demonstrated that, in practice, the t test gives very similar re-
sults to the non-parametric bootstrap and randomized permutation
tests [Smucker et al., 2007]. A metric that finds more system pairs
significantly different is said to be more highly discriminative. This
is a desirable statistical property, in that it means that significance
can be achieved with fewer topics. Under the random sampling hy-
pothesis, significance means that a result achieved on one topic set
is likely to be true of the full population of topics, and is therefore
likely to be replicated in another randomly sampled topic set; it
follows that discriminative power is also a measure of consistency,
predictivity, and in general stability.

3.3 Data set
The primary data set used in our experiments is the set of runs

submitted to the AdHoc task of TREC 8, along with the qrel set
from that year’s collection. A total of 129 runs, made across the 50
topics of the test collection, were submitted by 40 different research
groups. Up to 2 runs from each group were pooled, for a total of 71
pooled runs. Pooling was performed to depth 100, and the original
evaluation was performed to depth 1,000. Some 13 of the runs
were manual runs; the 11 best of these manual runs are the best
11 systems overall as measured by both P@10 and AP@10; one of
these manual runs, however, drops several ranks for AP@1000.



Metric
T5 T8 T01 T04 T05

mean
AH AH Web Rob TB

P@10 0.628 0.645 0.594 0.516 0.555 0.588
RBP, p=0.8 0.638 0.657 0.602 0.517 0.562 0.595
RBP, p=0.95 0.661 0.691 0.627 0.598 0.658 0.647
AP@1000 0.638 0.725 0.627 0.680 0.748 0.683
nDCG@1000 0.693 0.718 0.673 0.673 0.762 0.704

mean 0.651 0.687 0.624 0.597 0.657 0.643

Table 1: Discriminative power of standard metrics on different
TREC collections. The most discriminative metric for each col-
lection is highlighted.

We use four other TREC runsets for illustrative purposes. These
are the TREC 5 AdHoc task runset (61 systems); the TREC 2001
Web track runset (97 systems); the TREC 2004 Robust track run-
set, on the 49 new topics, Topics 651–700, only (110 systems); and
the TREC 2005 Terabyte runset (58 systems). These are similar in
makeup to the TREC 8 AdHoc runset, except that the TREC 2004
Robust runset lacks manual runs, and the TREC 2005 Terabyte con-
tains only two. The Terabyte runs return up to 10,000 documents,
but here evaluation is limited to depth 1,000. The “relevant” and
“highly relevant” judgments of the ternary relevance schemes in the
post-AdHoc collections are folded to (binary) “relevant”.
In our experiments, all the runs of each runset are used. Some

researchers remove the worst-performing 25% of systems, to ex-
clude defective runs, which consistently achieve the lowest scores
[Voorhees and Buckley, 2002]; however, we do not follow this prac-
tice, since we are concerned only with the relative, rather than the
absolute, stability of the metrics employed. Retaining weak runs
does inflate discriminative power figures, since almost all strong
systems are significantly better than almost all very weak ones;
under these conditions, apparently small changes in discriminative
power can represent quite large changes in practical results.

4. ANALYSIS
Table 1 shows the results of a typical comparison of metric sta-

bility, using the discriminative power measure. Five metrics (two
of them variants of RBP) are tested for discriminative power across
five different TREC runsets. Discriminative power varies from run-
set to runset, and the most discriminative metric alternates between
nDCG and AP. But in every case, nDCG is more (often much
more) discriminative than RBP, p = 0.95, while the shallower met-
rics P@10 and RBP, p = 0.8 are uniformly the least discriminative
metrics. The rest of this paper investigates the causes of the higher
discriminative power of nDCG, in particular its relationship with
depth of evaluation, depth of pooling, and normalization.

4.1 Depth and similarity
We begin by examining the effect of evaluation depth upon met-

ric behaviour. Section 3.1 made explicit the dependence that met-
rics (other than RBP) have upon evaluation depth. Is this depen-
dence a real or merely a formal one? Do metrics display noticeably
different behaviours at different evaluation depths?

Shallow versus deep evaluation

The similarity between two metrics (or the one metric evaluated
to two depths) can be measured by the Kendall’s τ correlation be-
tween the system rankings each metric produces. Table 2 shows
the correlation, on the TREC 8 AdHoc runset, between various
metrics, at evaluation depths of 10 and 1,000. The depth 10 met-

rics are more similar to themselves as a group (mean τ of 0.905)
than depth 1,000 metrics are to themselves (mean τ of 0.860), and
both are much more self-similar than depth 10 metrics are to depth
1,000 metrics (mean τ of 0.767). More importantly, a given metric
at depth 10 is more similar to other metrics at depth 10 than it is to
the same metric at depth 1,000, and the depth 1,000 metric is more
similar to other depth 1,000 metrics than it is to itself at depth 10.
Indeed, depth 10 metrics are scarcely more similar to themselves at
depth 1,000 than they are to other metrics at depth 1,000 (mean τ
of 0.773, across the bold values, compared to a mean τ of 0.767 for
the upper right quadrant as a whole). The only, partial exception to
these statements is AP; AP@1000 is as close to AP@10 as it is to
other @1000 metrics, possibly indicating a top-weighted metric.

Table 2 demonstrates that metric dependence on evaluation depth
is more than merely formal. Depth of evaluation is an essential
component of most metrics, and must be explicitly stated in report-
ing metric results, just as the p value of the RBP metric is. The
results also reflect nDCG’s peculiar weighting, top-weighted at the
beginning but flat at later depths. This is reflected in Table 2 by
the pronounced difference between nDCG@10 and nDCG@1000.
The former is almost identical, in the ranking it produces, to RBP
p = 0.8, which is a similarly top-weighted metric; the latter to
the quite flat-weighted RBP p = 0.9977. If nothing else, findings
about the stability of nDCG@1000 should not directly be used to
support the use of nDCG@10.

Evaluating beyond pooling depth

Table 2 compared evaluation and pooling to depth 10, with depth
1,000 evaluation on depth 100 pooling, the latter being the stan-
dard TREC treatment. It is interesting to tease out the relationship
between evaluation and pooling depth and their effect on metrics in
some more detail. Figure 2 does this for the nDCG metric, at vari-
ous combinations of evaluation and pooling depth, on the TREC 8
runset. We refer to pooling and evaluating to depth 10 as shallow;
pooling and evaluating to depth 100 as deep; and pooling to depth
10 but evaluating to depth 100 as extended. The right-hand fig-
ure shows that the relationship between deep and extended, viewed
across the full set of systems, is very strong, with a Kendall’s τ of
0.939. This is stronger than the relationship between shallow and
extended (left, τ = 0.874), and even more so than the relationship
between shallow and deep (middle, τ = 0.857). This indicates
that, for this runset at least, extending evaluation to depth 100 on a
depth 10 pool gives a reliable indication of full assessment to depth
100, thus providing evidence against the hypothesis that nDCG is
misled by system reinforcement effects.

A confound to this interpretation of the reliability of extended
evaluation is offered by the top-ranked runs. The second-ranked
run under deep evaluation is also second under shallow evaluation;
however, it drops back to being tied with three or four other sys-
tems under extended evaluation. Indeed, for pooling to depth 100
and evaluation to depth 1,000 (not shown) this system falls back
into the middle of the ranking. The other top-ranked systems also
show themselves to be impeded by extended evaluation. These top-
ranked runs are manual runs, with distinctive results (large numbers
of uniquely relevant documents), so it is not surprising that they are
relatively penalised by the reinforcement effect of evaluating be-
yond pooling depth. Given that these runs are arguably the most
important, lack of reliability on them is a significant issue.

The results from Figure 2 are, overall, reassuring for the practice
of evaluating beyond pooling depth. Even for a shallow, depth 10
pool, evaluating to depth 100 seems to give quite reliable results,
more reliable than restricting evaluation to depth 10. Caution is
required in interpreting these results, however. First, the pool for



R@ AP@ nDCG RBP P@ R@ AP@ nDCG RBP
10 10 @10 .8 1000 1000 1000 @1000 .9977

P@10 0.88 0.90 0.94 0.93 0.74 0.69 0.83 0.83 0.80
R@10 0.90 0.86 0.86 0.71 0.68 0.83 0.82 0.77
AP@10 0.90 0.90 0.73 0.70 0.86 0.85 0.79
nDCG@10 0.98 0.71 0.66 0.80 0.81 0.78
RBP.8 0.72 0.67 0.81 0.81 0.79

P@1000 0.88 0.81 0.85 0.90
R@1000 0.79 0.84 0.82
AP@1000 0.91 0.88
nDCG@1000 0.91

Table 2: Kendall’s τ between system rankings on the TREC 8 AdHoc track participant systems, using different metrics. Five metrics are
shown, and for each metric, evaluation to depth 10 and to depth 1,000. For RBP, p values which give a residual of 0.1 at these evaluation
depths are chosen. Comparisons between a metric at evaluation depth 10 and the same metric at evaluation depth 1,000 are in bold. Pooling
is performed to depth 10 for the depth 10 evaluation, and to depth 100 for the depth 1,000 evaluation.
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Figure 2: Relationship of system mean nDCG scores at different pooling and evaluation depths, for the TREC 8 AdHoc runset.

TREC 8 is a very wide one, containing many systems; the results
may be less reliable for narrower pools. Second, the TREC 8 col-
lection is, by current standards, not a large one; coverage of the
set of relevant documents will be quite high compared to corpus of
the size of the Terabyte collection, and so confirmation bias from
extended evaluation may be weaker. And finally, the impedance
experienced by the top-ranked, distinctive, manual systems under
extended evaluation shows that, even with relatively comprehen-
sive pools, distinctive systems (which are generally those that the
researcher is most interested in) can suffer from confirmation bias.

4.2 Depth and stability
We now explore the effect of evaluation and pooling depth upon

metric stability, as measured by discriminative power. We vary
pooling depth d from 5 to 100, and the evaluation depth k from
5 to 1000. Having pooling depth greater than evaluation depth
changes the normalization factors for normalized metrics, but has
no effect on unnormalized metrics.

Normalization cutoff

As mentioned in Section 3.1, R normalization can be performed in
one of two ways. The ideal ranking could extend to depth R, re-
gardless of the metric cutoff depth k, referred to as expanded nor-

malization; or else the ideal ranking could be cutoff at depth k, re-

ferred to as abbreviated normalization. Expanded normalization is
standard for recall and AP precision, abbreviated normalization for
nDCG. Figure 3 shows the discriminative power for each of these
methods under different pooling and evaluation depths. The black
lines are pooling depths; the crossed red line marks full assess-
ment, where evaluation and pooling depth are identical. The left-
hand figures show the behaviour of expanded normalization, the
right-hand figures of abbreviated normalization. For expanded nor-
malization, the pool depth lines approach the full assessment line
from below, indicating that pooling beyond assessment depth hurts
discriminative power. This is because deeper pooling increases the
value of R, without increasing the ability of runs to retrieve more
relevant documents. The range of score deltas for topics in which
R exceeds k becomes increasingly squashed, inflating the variabil-
ity of per-topic deltas, and making significance harder to achieve.
Similarly, for expanded normalization, the pool lines rise substan-
tially above the full-assessment curve, indicating that for a fixed
evaluation depth, pooling to less than evaluation depth boosts dis-
criminative power; perversely, less information gives better results
(though note that we do not here consider reliability of discrimina-
tion). Again, this is mostly because shallower pooling allows k to
exceed R for more topics. In contrast, abbreviated normalization
shows no damage from pooling beyond evaluation depth, and only
very slight benefit from holding pooling depth below evaluation
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(b) nDCG ≡ anDCG
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(c) AP ≡ eAP
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(d) aAP

Figure 3: Effects of expanded versus abbreviated normalization on discriminative power, for the AP and nDCG metrics. The data is the
TREC 8 AdHoc runset. Each curve shows discriminative power for a given pool depth, as the evaluation depth is varied. The crossed red
line shows discriminative power when evaluation and pool depth are the same; this represents full assessment.

depth. Abbreviated normalization is also, depth for depth, equal to
or greater than expanded normalization in discriminative power.
These results demonstrate that abbreviated normalization is to

be preferred to expanded normalization, at least for metric stabil-
ity. This suggests that the standard formulation for average pre-
cision, which uses expanded normalization, should be modified
to use abbreviated normalization, as given in Equation 4 in Sec-
tion 3.1, at least in situations where evaluation is depth is likely to
be less than the number of relevant documents for a topic. Note
that 20 of the 50 topics in TREC 8 have more than 100 relevant
documents, making the question a pertinent one. Conversely, Fig-
ure 3 gives support to the common practice at TREC of evaluating
beyond pooling depth (frequently performed as depth 1,000 eval-
uation on depth 100 pooling). We use abbreviated AP in the fol-
lowing experiments. We continue, however, to use the standard
(expanded-normalization) formulation of recall. (Abbreviated nor-
malization would likely also benefit the stability of recall, but such
a metric would be quite far removed from recall as generally un-

derstood. In particular, abbreviated-normalized recall is identical
to precision when R ≥ k.)

Discriminative power

In this section, we examine the effect that varying pooling and eval-
uation depth has upon the discriminative power of the precision, re-
call, DCG, AP, and RBP metrics. We consider the raw, normalized,
and standardized forms of these metrics. Figure 4 shows the results
of this analysis, on the TREC 8 AdHoc runset. The first conclusion
from these results is that, at least on this data set, discriminative
power under full assessment (the crossed red line) is affected more
by evaluation depth than it is by choice of metric. For all metrics,
discriminative power rises strongly with evaluation depth, and the
difference in discriminative power between any metric at depth 100
and that metric at depth 5 or 10 is greater than the difference in dis-
criminative power between different metrics at the same depth. So,
for instance, the strongest full-assessment discriminative power at
depth 100 is that of standardized AP, at 0.716, while the weakest is
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(a) Precision
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(b) Recall
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(c) sPrecision
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(d) DCG
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(e) nDCG
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(f) sDCG
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(g) RBP, p = 0.9977
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(h) aAP
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(i) sAP
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(j) RBP, resid = 0.1
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(k) nRBP, resid = 0.1

5 10 20 50 100 200 500 1000

0.50

0.55

0.60

0.65

0.70

0.75

Evaluation Depth

D
is

c
ri
m

in
a
ti
v
e
 P

o
w

e
r

x

x
x

x
x x

x

Pool depth

5

10

20

40

60

100

eval

(l) sRBP, resid = 0.1

Figure 4: Discriminative power of different metrics for evaluation beyond (and before) pooling depth, at various pool depths, on the TREC
8 runset. The RBP p parameter is varied so that the residual at the specified depth is 0.1. The right column shows standardized metrics.



recall, at 0.676, a gap of 0.040. In comparison, the discriminative
power of R@10 is 0.603, a fall of 0.073, while that of standard-
ized AP@10 is 0.660, a fall of 0.056. A second point to note from
Figure 4 is that only recall strongly displays the perverse behaviour
observed for the expanded-normalized metrics in Figure 3; that is,
for a fixed evaluation depth, of falling discriminative power with
increased pooling depth.
Regarding the interaction between pooling and evaluation depth,

it is notable in Figure 4 that normalized and standardized DCG and
AP display behaviour of almost entirely non-decreasing discrimi-
native power with evaluation depth. Even with depth 5 pooling, the
discriminative power of these metrics is increasing, or at worst lev-
elling off, all the way up to evaluation depth 1,000. This striking
result is difficult to explain away. It cannot adequately be attributed
to a reinforcement effect beyond pooling depth, because a similar
effect should be observed with P@1000 or with RBP, p = 0.9977.
On the contrary, both RBP and precision show a fall in discrimi-
native power when evaluation is pushed far beyond pooling depth.
At the same time, although normalization (or standardization) does
seem to help slightly (as can be seen by comparing DCG to nDCG),
the result cannot be attributed solely to the effect of normalization,
since normalized and standardized RBP, and standardized preci-
sion, still display a fall in discriminative power as evaluation depth
is pushed to the limit. Too much weight should not, of course,
be placed on the results of a single data set. Nevertheless, this
is initial evidence that the particular weighting scheme explicitly
adopted for DCG, and the one adopted implicitly for AP, do give
these metrics a benefit in discriminative power.
Examining the question of evaluation beyond pooling depth in

Figure 4, it is interesting, and perhaps a little surprising, to note that
for most of the metrics examined, except for the precision/recall
row, discriminative power tends to rise with increased evaluation
depth even if pooling depth is not increased. Indeed, in many case it
rises faster than if pooling depth is increased, too, if only by a slight
amount. So, for instance, for nDCG, with the evaluation depth fixed
to depth 20, pooling to depth 20 (that is, full assessment) gives a
discriminative power of 0.669, whereas pooling to depth 5 gives a
discriminative power of 0.675. This difference is small, and not by
itself statistically significant, but it is replicated across many differ-
ent metrics and evaluation depths; and in any case, even maintain-
ing the same discriminative power with less information (decreased
pooling) would require explanation. Whether the explanation lies
in near-complete assessment even with shallower pools, or in a re-
inforcement effect, or whether it relates to normalization (since the
effect is observed mostly in normalized or standardized metrics) is
unclear from this high-level view, and requires further analysis.
In Figure 4, we have compared the discriminative power of dif-

ferent metrics at various pooling and evaluation depths, which is to
say the proportion of system pairs found to be significantly differ-
ent. But just because two metrics and evaluation environments find
a similar proportion of system pairs to be significant, it does not
mean that they find the same actual system pairs to be significant;
they may be equally discriminative, but disagree in their discrim-
ination. One way of measuring agreement on significance is to
count the overlap in significant system pairs, but this is a rather in-
sensitive measure, since it simply cuts each set of system pairs into
two subsets, significant and not significant. A more sensitive mea-
sure is to consider the ordering that the p value of the significance
test gives to the system pairs (roughly, the degree of significance it
assigns to each system pair). These p values can be used to rank
the system pairs, and then the correlation between the rankings pro-
duced by different evaluation metrics can be compared. This com-
parison is undertaken in Table 3, with Kendall’s τ as the rank corre-

lation metric. Note first that the ranking by p values is more similar
between different metrics within the same evaluation and pooling
depth (the half-blocks along the block diagonal) than it is for the
one metric across different evaluation and pool depths (the values
in bold). These same-depth comparisons show very high τ values,
from 0.82 to 0.96 (91% to 98% of system pairs in the same order in
both rankings). When the comparison is between different depths,
the extended evaluation of pooling to depth 10 but evaluating to
depth 100 is closer to the deep evaluation of pooling and evalua-
tion to depth 100 than it is to the shallow evaluation of pooling and
evaluating to depth 10. This once again suggests that, at least for
this data set, evaluating beyond pool depth gives reliable results; or,
looked at another way, that evaluation depth is more important than
pooling depth, and both are more important than choice of metric.

5. CONCLUSIONS
This paper began with three, alternative (but not mutually exclu-

sive) hypotheses for explaining the high discriminative power of
nDCG: first, that it was due to greater evaluation depth; second,
that it was due to normalization; and third, that it was due to a
(misleading) reinforcement effect from evaluating beyond pooling
depth. The experimental results reported in this paper strongly sup-
port the first hypothesis, that is, that evaluation depth is crucial to
discriminative power. Provided pooling depth is raised as well (and
in many cases even if it isn’t), for all metrics examined here, greater
evaluation depth leads to greater discriminative power. Evaluation
depth is also more important, on the data set explored here, than
choice of metric. Equalising the effective evaluation depth closes
most (though not all) of the gap in discriminative power between
precision and RBP on the one hand, and nDCG and AP on the
other. Moreover, a common evaluation depth leads to greater simi-
larity than a common base metric, both for simple system rankings,
and for the ranking of system pairs by degree of significance.

Regarding the relationship between normalization and discrim-
inative power, the results are less straightforward. Certainly, nor-
malization without regard to evaluation depth, as is done with recall
and AP, leads to the perverse behaviour that discriminative power is
boosted by shallower pooling, and therefore less information; and
one recommendation of this paper is that the AP formulation should
be adjusted to normalize by the smaller of evaluation depth and the
number of (known) relevant documents. Beyond this, normaliza-
tion (and standardization) may lead to some slight improvement in
consistency, but the evidence is inconclusive. (Of course, it may be
that normalization gives a more reliable measure of true effective-
ness, even if it does not confer greater statistical stability.)

Finally, the experiments show only slight support for the hypoth-
esis that nDCG is, through its heavy-tailed nature, being misled by
system reinforcement beyond pooling depth. At least for depth 100
evaluation, and at least on this runset, a depth 10 pool gives a reli-
able indication of the scores that full assessment (that is, depth 100
pooling) would give. There is evidence, though, that highly dis-
tinctive systems, such as the manual systems, can be penalized by a
lack of reinforcement. Looking at the discrimination results them-
selves, it is distinctive that, at least for shallow depths, increasing
evaluation depth while holding pooling depth fixed raises discrimi-
native power as effectively as (and in some cases even slightly more
than) it does when pooling depth is also increased. Additionally,
the runset used here is one of the most fully pooled of the TREC
data sets; a sparser runset might give different results.
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Pool Eval Metric
Pool@10 Pool@10 Pool@100
Eval@10 Eval@100 Eval@100

nDCG RBP aAP nDCG RBP aAP nDCG RBP

10 10 aAP 0.89 0.88 0.73 0.72 0.67 0.74 0.74 0.73

nDCG 0.96 0.73 0.75 0.70 0.73 0.76 0.74

RBP 0.72 0.74 0.69 0.72 0.75 0.73

10 100 aAP 0.88 0.84 0.86 0.86 0.81
nDCG 0.88 0.79 0.88 0.83
RBP 0.75 0.81 0.85

100 100 aAP 0.87 0.82
nDCG 0.88

Table 3: Kendall’s τ between p values assigned to TREC 8 AdHoc system pairs by paired, two-tailed t tests, for evaluation and pooling
depths and metrics. Values in bold are those for which a metric is compared against itself (at different pooling or evaluation depth); values in
italic are those in which the pair of metrics have different evaluation depths. Results are divided into blocks by pooling and evaluation depth.
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