Off to FTI: see you on the other side

January 18th, 2015

Tomorrow I'm starting a new, full-time position as data scientist at FTI's lab here in Melbourne. I'm excited to have the opportunity to contribute to the e-discovery community from another angle, as a builder-of-product. Unfortunately, this means the end of this blog, at least in its current form and at least for now. Thanks to all my readers, commenters, and draft-post-reviewers. It's been an entertaining experience!

Confidence intervals on recall and eRecall

January 4th, 2015

There is an ongoing discussion about methods of estimating the recall of a production, as well as estimating a confidence interval on that recall. One approach is to use the control set sample, drawn at the start of production to estimate collection richness and guide the predictive coding process, to also estimate the final confidence interval. This requires some care, however, to avoid contaminating the control with the training set. Using the control set for the final estimate is also open to the objection that the control set coding decisions, having been made before the subject-matter expert (SME) was familiar with the collection and the case, may be unreliable.
Read the rest of this entry »

Why training and review (partly) break control sets

October 20th, 2014

A technology-assisted review (TAR) process frequently begins with the creation of a control set---a set of documents randomly sampled from the collection, and coded by a human expert for relevance. The control set can then be used to estimate the richness (proportion relevant) of the collection, and also to gauge the effectiveness of a predictive coding (PC) system as training is undertaken. We might also want to use the control set to estimate the completeness of the TAR process as a whole. However, we may run into problems if we attempt to do so.

The reason the control set can be used to estimate the effectiveness of the PC system on the collection is that it is a random sample of that collection. As training proceeds, however, the relevance of some of the documents in the collection will become known through human assessment---even more so if review begins before training is complete (as is often the case). Direct measures of process effectiveness on the control set will fail to take account of the relevant and irrelevant documents already found through human assessment.
Read the rest of this entry »

Total assessment cost with different cost models

October 16th, 2014

In my previous post, I found that relevance and uncertainty selection needed similar numbers of document relevance assessments to achieve a given level of recall. I summarized this by saying the two methods had similar cost. The number of documents assessed, however, is only a very approximate measure of the cost of a review process, and richer cost models might lead to a different conclusion.

One distinction that is sometimes made is between the cost of training a document, and the cost of reviewing it. It is often assumed that training is performed by a subject-matter expert, whereas review is done by more junior reviewers. The subject-matter expert costs more than the junior reviewers---let's say, five times as much. Therefore, assessing a document for relevance during training will cost more than doing so during review.
Read the rest of this entry »

Total review cost of training selection methods

September 27th, 2014

My previous post described in some detail the conditions of finite population annotation that apply to e-discovery. To summarize, what we care about (or at least should care about) is not maximizing classifier accuracy in itself, but minimizing the total cost of achieving a target level of recall. The predominant cost in the review stage is that of having human experts train the classifier, and of having human reviewers review the documents that the classifier predicts as responsive. Each relevant document found in training is one fewer that must be looked at in review. Therefore, training example selection methods such as relevance selection that prioritize relevant documents are likely to have a lower total cost than the abstract measure of classifier effectiveness might suggest.
Read the rest of this entry »

Finite population protocols and selection training methods

September 15th, 2014

In a previous post, I compared three methods of selecting training examples for predictive coding—random, uncertainty and relevance. The methods were compared on their efficiency in improving the accuracy of a text classifier; that is, the number of training documents required to achieve a certain level of accuracy (or, conversely, the level of accuracy achieved for a given number of training documents). The study found that uncertainty selection was consistently the most efficient, though there was no great difference betweein it and relevance selection on very low richness topics. Random sampling, in contrast, performs very poorly on low richness topics.

In e-discovery, however, classifier accuracy is not an end in itself (though many widely-used protocols treat is as such). What we care about, rather, is the total amount of effort required to achieve an acceptable level of recall; that is, to find some proportion of the relevant documents in the collection. (We also care about determining to our satisfaction, and demonstrating to others, that that level of recall has been achieved—but that is beyond the scope of the current post.) A more accurate classifier means a higher precision in the candidate production for a given level of recall (or, equivalently, a lesser cutoff depth in the predictive ranking), which in turn saves cost in post-predictive first-pass review. But training the classifier itself takes effort, and after some point, the incremental saving in review effort may be outweighted by the incremental cost in training.
Read the rest of this entry »

Research topics in e-discovery

August 8th, 2014

Dr. Dave Lewis is visiting us in Melbourne on a short sabbatical, and yesterday he gave an interesting talk at RMIT University on research topics in e-discovery. We also had Dr. Paul Hunter, Principal Research Scientist at FTI Consulting, in the audience, as well as research academics from RMIT and the University of Melbourne, including Professor Mark Sanderson and Professor Tim Baldwin. The discussion amongst attendees was almost as interesting as the talk itself, and a number of suggestions for fruitful research were raised, many with fairly direct relevance to application development. I thought I'd capture some of these topics here.
Read the rest of this entry »

Random vs active selection of training examples in e-discovery

July 17th, 2014

The problem with agreeing to teach is that you have less time for blogging, and the problem with a hiatus in blogging is that the topic you were in the middle of discussing gets overtaken by questions of more immediate interest. I hope to return to the question of simulating assessor error in a later post, but first I want to talk about an issue that is attracting attention at the moment: how to select documents for training a predictive coding system.
Read the rest of this entry »

Can you train a useful model with incorrect labels?

February 25th, 2014

We, in this blog, are in the middle of a series of simulation experiments on the effect of assessor error on text classifier reliability. There's still some way to go with these experiments, but in the mean time the topic has attracted some attention on the blogosphere. Ralph Losey has forcefully re-iterated his characterization of using non-experts to train a predictive coding system as garbage in, garbage out, a position which he regards Jeremy Pickens and myself as disagreeing with. Jeremy Pickens, meanwhile, has responded by citing Catalyst experiments on TREC data that show (remarkably) that a model trained even entirely with incorrect labels can be almost as useful as one trained by an expert.
Read the rest of this entry »

Assessor error and term model weights

January 3rd, 2014

In my last post, we saw that randomly swapping training labels, in a (simplistic) simulation of the effect of assessor error, leads as expected to a decline in classifier accuracy, with the decline being greater for lower prevalence topics (in part, we surmised, because of the primitive way we were simulating assessor errors). In this post, I thought it would be interesting to look inside the machine learner, and try to understand in more detail what effect the erroneous training data has. As we'll see, we learn something about how the classifier works by doing so, but end up with some initially surprising findings about the effect of assessor error on the classifier's model.
Read the rest of this entry »